Supplemental paper materials
This page contains additional data and analysis supporting the paper:
The following table describes the 139 datasets evalauted in the paper. Each dataset consists of exactly one version chain. One version chain consists of a varying number of versions (at least 3). Datasets 1 and 2 are the CEDAR and DBpedia datasets. Datasets 3-136 are the LOV datasets (i.e. retrieved via the Linked Open Vocabularies API). Datasets 137-139 are the SPARQL datasets (i.e. version chains reconstructed after querying the 637 public SPARQL endpoints in datahub.io). Each dataset is described by the following characteristics/features:
totalSize | nSnapshots | avgGap | avgSize | nInserts | nDeletes | nComm | ratioInserts | ratioDeletes | ratioComm | maxTreeDepth | avgTreeDepth | totalInstances | ratioInstances | ratioInstancesVSIS | totalStructural | ratioStructural | ratioStructuralVSIS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 19639805 | 8 | 4223.57 | 2454975.62 | 17420246 | 19043105 | 2052 | 0.48 | 0.52 | 0.00 | 3 | 3.00 | 2173259 | 0.11 | 1.00 | 3585 | 0.00 | 0.00 |
2 | 50084545 | 5 | 278.75 | 10016909.00 | 15269985 | 4862044 | 29313340 | 0.31 | 0.10 | 0.59 | 2 | 2.00 | 50049049 | 1.00 | 1.00 | 2049 | 0.00 | 0.00 |
3 | 736 | 4 | 181.33 | 184.00 | 233 | 367 | 222 | 0.28 | 0.45 | 0.27 | 1 | 1.00 | 121 | 0.16 | 0.91 | 12 | 0.02 | 0.09 |
4 | 776 | 3 | 67.00 | 258.67 | 384 | 250 | 221 | 0.45 | 0.29 | 0.26 | 1 | 1.00 | 110 | 0.14 | 0.75 | 37 | 0.05 | 0.25 |
5 | 3281 | 3 | 99.50 | 1093.67 | 1389 | 1861 | 631 | 0.36 | 0.48 | 0.16 | 1 | 1.00 | 1093 | 0.33 | 0.64 | 603 | 0.18 | 0.36 |
6 | 1395 | 3 | 1607.00 | 465.00 | 444 | 660 | 344 | 0.31 | 0.46 | 0.24 | 3 | 3.00 | 296 | 0.21 | 0.80 | 72 | 0.05 | 0.20 |
7 | 1853 | 3 | 61.50 | 617.67 | 397 | 470 | 817 | 0.24 | 0.28 | 0.49 | 1 | 1.67 | 230 | 0.12 | 0.73 | 86 | 0.05 | 0.27 |
8 | 1108 | 5 | 203.00 | 221.60 | 344 | 274 | 605 | 0.28 | 0.22 | 0.49 | 1 | 1.00 | 190 | 0.17 | 0.67 | 94 | 0.08 | 0.33 |
9 | 518 | 4 | 256.67 | 129.50 | 82 | 39 | 328 | 0.18 | 0.09 | 0.73 | 1 | 1.00 | 94 | 0.18 | 0.84 | 18 | 0.03 | 0.16 |
10 | 351 | 3 | 385.50 | 117.00 | 53 | 30 | 195 | 0.19 | 0.11 | 0.70 | 2 | 1.67 | 66 | 0.19 | 0.61 | 42 | 0.12 | 0.39 |
11 | 543 | 4 | 256.67 | 135.75 | 82 | 37 | 345 | 0.18 | 0.08 | 0.74 | 2 | 2.00 | 93 | 0.17 | 0.79 | 24 | 0.04 | 0.21 |
12 | 330 | 3 | 243.50 | 110.00 | 37 | 22 | 191 | 0.15 | 0.09 | 0.76 | 2 | 2.00 | 53 | 0.16 | 0.78 | 15 | 0.05 | 0.22 |
13 | 6896 | 4 | 104.33 | 1724.00 | 1369 | 1359 | 3903 | 0.21 | 0.20 | 0.59 | 5 | 5.00 | 935 | 0.14 | 0.67 | 453 | 0.07 | 0.33 |
14 | 4266 | 3 | 259.50 | 1422.00 | 1398 | 1742 | 1310 | 0.31 | 0.39 | 0.29 | 3 | 2.33 | 844 | 0.20 | 0.76 | 264 | 0.06 | 0.24 |
15 | 2371 | 7 | 502.00 | 338.71 | 1432 | 513 | 895 | 0.50 | 0.18 | 0.32 | 3 | 1.57 | 339 | 0.14 | 0.76 | 106 | 0.04 | 0.24 |
16 | 5637 | 1 | 298.00 | 5637.00 | 7 | 8.00 | 1200 | 0.21 | 0.72 | 470 | 0.08 | 0.28 | ||||||
17 | 387 | 3 | 368.50 | 129.00 | 117 | 136 | 130 | 0.31 | 0.36 | 0.34 | 2 | 2.00 | 119 | 0.31 | 0.69 | 54 | 0.14 | 0.31 |
18 | 1027 | 4 | 449.00 | 256.75 | 338 | 457 | 378 | 0.29 | 0.39 | 0.32 | 2 | 2.00 | 293 | 0.29 | 0.83 | 58 | 0.06 | 0.17 |
19 | 744 | 3 | 789.00 | 248.00 | 69 | 80 | 428 | 0.12 | 0.14 | 0.74 | 1 | 1.00 | 158 | 0.21 | 0.96 | 6 | 0.01 | 0.04 |
20 | 139 | 3 | 1177.50 | 46.33 | 27 | 30 | 67 | 0.22 | 0.24 | 0.54 | 1 | 1.33 | 12 | 0.09 | 0.36 | 21 | 0.15 | 0.64 |
21 | 5455 | 12 | 137.82 | 454.58 | 709 | 1196 | 3768 | 0.12 | 0.21 | 0.66 | 3 | 0.25 | 1237 | 0.23 | 0.93 | 94 | 0.02 | 0.07 |
22 | 547 | 3 | 486.50 | 182.33 | 329 | 438 | 2 | 0.43 | 0.57 | 0.00 | 1 | 1.00 | 143 | 0.26 | 0.66 | 73 | 0.13 | 0.34 |
23 | 499 | 6 | 329.40 | 83.17 | 74 | 69 | 356 | 0.15 | 0.14 | 0.71 | 1 | 1.00 | 118 | 0.24 | 0.84 | 23 | 0.05 | 0.16 |
24 | 3134 | 4 | 126.00 | 783.50 | 119 | 142 | 2241 | 0.05 | 0.06 | 0.90 | 4 | 2.75 | 1243 | 0.40 | 0.70 | 528 | 0.17 | 0.30 |
25 | 672 | 5 | 100.60 | 134.40 | 174 | 104 | 387 | 0.26 | 0.16 | 0.58 | 2 | 1.80 | 174 | 0.26 | 0.81 | 41 | 0.06 | 0.19 |
26 | 303 | 5 | 226.25 | 60.60 | 47 | 43 | 201 | 0.16 | 0.15 | 0.69 | 1 | 1.00 | 79 | 0.26 | 0.83 | 16 | 0.05 | 0.17 |
27 | 10017 | 6 | 615.20 | 1669.50 | 6986 | 7500 | 1297 | 0.44 | 0.48 | 0.08 | 4 | 3.33 | 2395 | 0.24 | 0.55 | 1993 | 0.20 | 0.45 |
28 | 1796 | 9 | 352.38 | 199.56 | 398 | 138 | 1330 | 0.21 | 0.07 | 0.71 | 2 | 1.11 | 510 | 0.28 | 0.94 | 34 | 0.02 | 0.06 |
29 | 59 | 3 | 806.00 | 19.67 | 17 | 16 | 25 | 0.29 | 0.28 | 0.43 | 0 | 0.00 | 6 | 0.10 | 1.00 | 0 | 0.00 | 0.00 |
30 | 2092 | 6 | 153.20 | 348.67 | 534 | 221 | 1450 | 0.24 | 0.10 | 0.66 | 1 | 1.00 | 258 | 0.12 | 0.91 | 24 | 0.01 | 0.09 |
31 | 418 | 3 | 806.00 | 139.33 | 97 | 98 | 183 | 0.26 | 0.26 | 0.48 | 0 | 0.00 | 45 | 0.11 | 1.00 | 0 | 0.00 | 0.00 |
32 | 2263 | 9 | 130.67 | 251.44 | 891 | 579 | 1349 | 0.32 | 0.21 | 0.48 | 3 | 1.44 | 809 | 0.36 | 0.90 | 93 | 0.04 | 0.10 |
33 | 2592 | 3 | 806.00 | 864.00 | 460 | 451 | 1276 | 0.21 | 0.21 | 0.58 | 1 | 1.00 | 296 | 0.11 | 0.92 | 27 | 0.01 | 0.08 |
34 | 343 | 3 | 806.00 | 114.33 | 67 | 68 | 163 | 0.22 | 0.23 | 0.55 | 1 | 1.00 | 36 | 0.10 | 0.86 | 6 | 0.02 | 0.14 |
35 | 1697 | 3 | 173.00 | 565.67 | 380 | 513 | 668 | 0.24 | 0.33 | 0.43 | 1 | 1.00 | 381 | 0.22 | 0.95 | 21 | 0.01 | 0.05 |
36 | 87839 | 7 | 42.43 | 12548.43 | 41513 | 45645 | 30183 | 0.35 | 0.39 | 0.26 | 6 | 4.29 | 18942 | 0.22 | 0.50 | 18972 | 0.22 | 0.50 |
37 | 1414 | 3 | 335.50 | 471.33 | 353 | 481 | 505 | 0.26 | 0.36 | 0.38 | 2 | 2.00 | 273 | 0.19 | 0.58 | 195 | 0.14 | 0.42 |
38 | 707 | 6 | 254.00 | 117.83 | 396 | 312 | 250 | 0.41 | 0.33 | 0.26 | 1 | 1.00 | 99 | 0.14 | 0.94 | 6 | 0.01 | 0.06 |
39 | 11736 | 6 | 370.80 | 1956.00 | 3601 | 3710 | 6168 | 0.27 | 0.28 | 0.46 | 4 | 3.33 | 2139 | 0.18 | 0.64 | 1180 | 0.10 | 0.36 |
40 | 2051 | 7 | 611.33 | 293.00 | 1902 | 1812 | 82 | 0.50 | 0.48 | 0.02 | 1 | 0.86 | 460 | 0.22 | 0.83 | 96 | 0.05 | 0.17 |
41 | 17470 | 7 | 118.00 | 2495.71 | 6144 | 5584 | 9006 | 0.30 | 0.27 | 0.43 | 4 | 3.29 | 3444 | 0.20 | 0.81 | 792 | 0.05 | 0.19 |
42 | 1710 | 4 | 470.00 | 427.50 | 684 | 614 | 632 | 0.35 | 0.32 | 0.33 | 3 | 3.00 | 306 | 0.18 | 0.86 | 50 | 0.03 | 0.14 |
43 | 658 | 3 | 126.00 | 219.33 | 73 | 30 | 396 | 0.15 | 0.06 | 0.79 | 1 | 1.00 | 103 | 0.16 | 0.79 | 27 | 0.04 | 0.21 |
44 | 1359 | 4 | 287.33 | 339.75 | 121 | 116 | 909 | 0.11 | 0.10 | 0.79 | 1 | 1.00 | 298 | 0.22 | 0.96 | 12 | 0.01 | 0.04 |
45 | 800 | 3 | 335.50 | 266.67 | 178 | 274 | 296 | 0.24 | 0.37 | 0.40 | 1 | 1.00 | 161 | 0.20 | 0.62 | 98 | 0.12 | 0.38 |
46 | 29393 | 15 | 91.79 | 1959.53 | 8383 | 8097 | 19313 | 0.23 | 0.23 | 0.54 | 5 | 3.67 | 7359 | 0.25 | 0.62 | 4601 | 0.16 | 0.38 |
47 | 5624 | 10 | 356.22 | 562.40 | 276 | 111 | 4889 | 0.05 | 0.02 | 0.93 | 2 | 2.00 | 1440 | 0.26 | 0.91 | 137 | 0.02 | 0.09 |
48 | 1393 | 6 | 61.00 | 232.17 | 251 | 24 | 1023 | 0.19 | 0.02 | 0.79 | 2 | 1.83 | 500 | 0.36 | 0.95 | 24 | 0.02 | 0.05 |
49 | 870 | 3 | 82.00 | 290.00 | 195 | 267 | 341 | 0.24 | 0.33 | 0.42 | 2 | 2.00 | 166 | 0.19 | 0.82 | 37 | 0.04 | 0.18 |
50 | 1561 | 4 | 55.00 | 390.25 | 444 | 576 | 634 | 0.27 | 0.35 | 0.38 | 3 | 3.25 | 301 | 0.19 | 0.69 | 135 | 0.09 | 0.31 |
51 | 6670 | 3 | 691.50 | 2223.33 | 641 | 641 | 3863 | 0.12 | 0.12 | 0.75 | 2 | 2.33 | 2573 | 0.39 | 0.92 | 216 | 0.03 | 0.08 |
52 | 616 | 3 | 347.00 | 205.33 | 166 | 221 | 210 | 0.28 | 0.37 | 0.35 | 3 | 2.00 | 98 | 0.16 | 0.60 | 66 | 0.11 | 0.40 |
53 | 45667 | 12 | 274.45 | 3805.58 | 7632 | 3445 | 35386 | 0.16 | 0.07 | 0.76 | 2 | 1.25 | 8716 | 0.19 | 0.99 | 120 | 0.00 | 0.01 |
54 | 15959 | 4 | 231.67 | 3989.75 | 5526 | 6665 | 5588 | 0.31 | 0.37 | 0.31 | 3 | 2.75 | 2008 | 0.13 | 0.90 | 225 | 0.01 | 0.10 |
55 | 8803 | 3 | 365.50 | 2934.33 | 655 | 646 | 5224 | 0.10 | 0.10 | 0.80 | 4 | 5.00 | 1767 | 0.20 | 0.54 | 1485 | 0.17 | 0.46 |
56 | 253 | 3 | 475.50 | 84.33 | 36 | 56 | 123 | 0.17 | 0.26 | 0.57 | 1 | 0.33 | 44 | 0.17 | 0.83 | 9 | 0.04 | 0.17 |
57 | 164 | 3 | 661.00 | 54.67 | 92 | 39 | 54 | 0.50 | 0.21 | 0.29 | 1 | 0.67 | 35 | 0.21 | 0.95 | 2 | 0.01 | 0.05 |
58 | 934 | 3 | 120.00 | 311.33 | 78 | 54 | 557 | 0.11 | 0.08 | 0.81 | 3 | 2.33 | 144 | 0.15 | 0.71 | 59 | 0.06 | 0.29 |
59 | 1997 | 3 | 82.50 | 665.67 | 453 | 620 | 768 | 0.25 | 0.34 | 0.42 | 2 | 2.00 | 406 | 0.20 | 0.84 | 79 | 0.04 | 0.16 |
60 | 3552 | 5 | 39.00 | 710.40 | 384 | 526 | 2318 | 0.12 | 0.16 | 0.72 | 5 | 2.80 | 648 | 0.18 | 0.70 | 273 | 0.08 | 0.30 |
61 | 376 | 3 | 376.50 | 125.33 | 68 | 45 | 200 | 0.22 | 0.14 | 0.64 | 1 | 1.00 | 89 | 0.24 | 0.93 | 7 | 0.02 | 0.07 |
62 | 367 | 3 | 337.50 | 122.33 | 190 | 82 | 106 | 0.50 | 0.22 | 0.28 | 3 | 2.00 | 58 | 0.16 | 0.79 | 15 | 0.04 | 0.21 |
63 | 3397 | 4 | 302.00 | 849.25 | 1730 | 1299 | 1139 | 0.42 | 0.31 | 0.27 | 2 | 1.50 | 663 | 0.20 | 0.76 | 212 | 0.06 | 0.24 |
64 | 17391 | 6 | 376.80 | 2898.50 | 10527 | 5808 | 6527 | 0.46 | 0.25 | 0.29 | 4 | 1.83 | 4913 | 0.28 | 0.85 | 843 | 0.05 | 0.15 |
65 | 74610 | 4 | 402.33 | 18652.50 | 29449 | 17608 | 36442 | 0.35 | 0.21 | 0.44 | 1 | 1.25 | 7242 | 0.10 | 0.59 | 4944 | 0.07 | 0.41 |
66 | 691 | 3 | 375.00 | 230.33 | 348 | 321 | 168 | 0.42 | 0.38 | 0.20 | 0 | 0.00 | 143 | 0.21 | 0.63 | 85 | 0.12 | 0.37 |
67 | 6206 | 13 | 205.38 | 477.38 | 1084 | 338 | 5021 | 0.17 | 0.05 | 0.78 | 1 | 0.85 | 563 | 0.09 | 0.95 | 27 | 0.00 | 0.05 |
68 | 1818 | 4 | 112.50 | 454.50 | 951 | 1104 | 411 | 0.39 | 0.45 | 0.17 | 3 | 2.00 | 473 | 0.26 | 0.78 | 134 | 0.07 | 0.22 |
69 | 406 | 3 | 485.00 | 135.33 | 61 | 39 | 226 | 0.19 | 0.12 | 0.69 | 1 | 1.00 | 79 | 0.19 | 0.73 | 29 | 0.07 | 0.27 |
70 | 1012 | 16 | 57.60 | 63.25 | 259 | 143 | 746 | 0.23 | 0.12 | 0.65 | 1 | 0.31 | 146 | 0.14 | 0.92 | 13 | 0.01 | 0.08 |
71 | 782 | 4 | 272.33 | 195.50 | 41 | 16 | 556 | 0.07 | 0.03 | 0.91 | 1 | 1.00 | 151 | 0.19 | 0.97 | 4 | 0.01 | 0.03 |
72 | 570 | 4 | 481.33 | 142.50 | 273 | 190 | 213 | 0.40 | 0.28 | 0.32 | 2 | 1.50 | 163 | 0.29 | 0.95 | 8 | 0.01 | 0.05 |
73 | 11308 | 4 | 254.67 | 2827.00 | 5859 | 5434 | 3399 | 0.40 | 0.37 | 0.23 | 2 | 2.00 | 2418 | 0.21 | 0.61 | 1551 | 0.14 | 0.39 |
74 | 2211 | 3 | 168.00 | 737.00 | 406 | 403 | 1071 | 0.22 | 0.21 | 0.57 | 2 | 2.33 | 577 | 0.26 | 0.73 | 209 | 0.09 | 0.27 |
75 | 42866 | 5 | 239.25 | 8573.20 | 8853 | 8591 | 26074 | 0.20 | 0.20 | 0.60 | 0 | 0.00 | 3718 | 0.09 | 1.00 | 0 | 0.00 | 0.00 |
76 | 21094 | 7 | 153.33 | 3013.43 | 4466 | 3962 | 13663 | 0.20 | 0.18 | 0.62 | 0 | 0.00 | 7327 | 0.35 | 1.00 | 0 | 0.00 | 0.00 |
77 | 309 | 4 | 589.00 | 77.25 | 140 | 87 | 120 | 0.40 | 0.25 | 0.35 | 1 | 1.00 | 72 | 0.23 | 0.91 | 7 | 0.02 | 0.09 |
78 | 3008 | 3 | 51.00 | 1002.67 | 1134 | 720 | 1149 | 0.38 | 0.24 | 0.38 | 5 | 4.67 | 509 | 0.17 | 0.65 | 277 | 0.09 | 0.35 |
79 | 2802 | 3 | 1565.00 | 934.00 | 1363 | 765 | 951 | 0.44 | 0.25 | 0.31 | 3 | 3.00 | 619 | 0.22 | 0.61 | 388 | 0.14 | 0.39 |
80 | 4062 | 10 | 52.44 | 406.20 | 359 | 265 | 3337 | 0.09 | 0.07 | 0.84 | 2 | 2.20 | 799 | 0.20 | 0.83 | 159 | 0.04 | 0.17 |
81 | 320 | 2 | 192.00 | 160.00 | 19 | 9 | 147 | 0.11 | 0.05 | 0.84 | 1 | 1.00 | 43 | 0.13 | 0.91 | 4 | 0.01 | 0.09 |
82 | 1318 | 3 | 174.50 | 439.33 | 1011 | 757 | 2 | 0.57 | 0.43 | 0.00 | 2 | 2.00 | 137 | 0.10 | 0.64 | 76 | 0.06 | 0.36 |
83 | 5244 | 4 | 230.00 | 1311.00 | 2754 | 2365 | 1598 | 0.41 | 0.35 | 0.24 | 1 | 1.00 | 873 | 0.17 | 0.84 | 164 | 0.03 | 0.16 |
84 | 162 | 3 | 6.50 | 54.00 | 97 | 57 | 32 | 0.52 | 0.31 | 0.17 | 0 | 0.00 | 41 | 0.25 | 1.00 | 0 | 0.00 | 0.00 |
85 | 394 | 3 | 6.00 | 131.33 | 84 | 135 | 159 | 0.22 | 0.36 | 0.42 | 1 | 1.00 | 105 | 0.27 | 0.75 | 35 | 0.09 | 0.25 |
86 | 458 | 4 | 184.33 | 114.50 | 22 | 20 | 326 | 0.06 | 0.05 | 0.89 | 1 | 1.00 | 124 | 0.27 | 0.97 | 4 | 0.01 | 0.03 |
87 | 529 | 3 | 81.50 | 176.33 | 110 | 136 | 223 | 0.23 | 0.29 | 0.48 | 3 | 2.00 | 82 | 0.16 | 0.59 | 56 | 0.11 | 0.41 |
88 | 858 | 4 | 339.00 | 214.50 | 122 | 95 | 533 | 0.16 | 0.13 | 0.71 | 2 | 1.50 | 234 | 0.27 | 0.84 | 46 | 0.05 | 0.16 |
89 | 5202 | 10 | 156.11 | 520.20 | 891 | 453 | 4009 | 0.17 | 0.08 | 0.75 | 2 | 2.40 | 932 | 0.18 | 0.92 | 81 | 0.02 | 0.08 |
90 | 1403 | 3 | 339.00 | 467.67 | 42 | 14 | 910 | 0.04 | 0.01 | 0.94 | 0 | 0.00 | 237 | 0.17 | 1.00 | 0 | 0.00 | 0.00 |
91 | 3651 | 3 | 497.00 | 1217.00 | 2197 | 2607 | 199 | 0.44 | 0.52 | 0.04 | 3 | 3.33 | 992 | 0.27 | 0.92 | 85 | 0.02 | 0.08 |
92 | 1820 | 8 | 293.00 | 227.50 | 484 | 226 | 1255 | 0.25 | 0.12 | 0.64 | 0 | 0.00 | 328 | 0.18 | 1.00 | 0 | 0.00 | 0.00 |
93 | 338 | 3 | 107.00 | 112.67 | 54 | 68 | 164 | 0.19 | 0.24 | 0.57 | 1 | 1.00 | 57 | 0.17 | 0.90 | 6 | 0.02 | 0.10 |
94 | 1405 | 3 | 229.50 | 468.33 | 399 | 148 | 627 | 0.34 | 0.13 | 0.53 | 2 | 2.00 | 220 | 0.16 | 0.76 | 68 | 0.05 | 0.24 |
95 | 521 | 5 | 95.75 | 104.20 | 119 | 134 | 289 | 0.22 | 0.25 | 0.53 | 1 | 1.00 | 122 | 0.23 | 0.88 | 16 | 0.03 | 0.12 |
96 | 3078 | 11 | 112.50 | 279.82 | 947 | 781 | 2013 | 0.25 | 0.21 | 0.54 | 2 | 1.64 | 1143 | 0.37 | 0.90 | 127 | 0.04 | 0.10 |
97 | 7523 | 5 | 245.75 | 1504.60 | 2720 | 1983 | 3881 | 0.32 | 0.23 | 0.45 | 2 | 2.60 | 845 | 0.11 | 0.78 | 235 | 0.03 | 0.22 |
98 | 2732 | 8 | 280.57 | 341.50 | 936 | 887 | 1554 | 0.28 | 0.26 | 0.46 | 3 | 2.50 | 703 | 0.26 | 0.79 | 188 | 0.07 | 0.21 |
99 | 2050 | 8 | 170.86 | 256.25 | 663 | 487 | 1259 | 0.28 | 0.20 | 0.52 | 2 | 1.25 | 787 | 0.38 | 0.90 | 90 | 0.04 | 0.10 |
100 | 628 | 3 | 619.00 | 209.33 | 219 | 210 | 205 | 0.35 | 0.33 | 0.32 | 1 | 0.33 | 205 | 0.33 | 0.93 | 16 | 0.03 | 0.07 |
101 | 1033 | 4 | 447.00 | 258.25 | 96 | 64 | 706 | 0.11 | 0.07 | 0.82 | 3 | 2.25 | 280 | 0.27 | 0.84 | 53 | 0.05 | 0.16 |
102 | 8903 | 4 | 235.33 | 2225.75 | 188 | 186 | 6492 | 0.03 | 0.03 | 0.95 | 0 | 0.00 | 1004 | 0.11 | 1.00 | 0 | 0.00 | 0.00 |
103 | 520 | 3 | 290.00 | 173.33 | 48 | 16 | 314 | 0.13 | 0.04 | 0.83 | 0 | 0.00 | 137 | 0.26 | 1.00 | 0 | 0.00 | 0.00 |
104 | 1098 | 3 | 277.50 | 366.00 | 309 | 513 | 289 | 0.28 | 0.46 | 0.26 | 1 | 1.33 | 261 | 0.24 | 0.72 | 101 | 0.09 | 0.28 |
105 | 1058 | 3 | 196.50 | 352.67 | 654 | 325 | 263 | 0.53 | 0.26 | 0.21 | 2 | 1.33 | 292 | 0.28 | 0.77 | 88 | 0.08 | 0.23 |
106 | 1266 | 3 | 382.00 | 422.00 | 334 | 460 | 429 | 0.27 | 0.38 | 0.35 | 2 | 2.33 | 216 | 0.17 | 0.59 | 151 | 0.12 | 0.41 |
107 | 4320 | 2 | 149.00 | 2160.00 | 1427 | 2893 | 1 | 0.33 | 0.67 | 0.00 | 6 | 3.50 | 1185 | 0.27 | 0.85 | 212 | 0.05 | 0.15 |
108 | 129601 | 20 | 50.32 | 6480.05 | 7417 | 1885 | 119431 | 0.06 | 0.01 | 0.93 | 3 | 2.50 | 27090 | 0.21 | 0.71 | 11088 | 0.09 | 0.29 |
109 | 420 | 4 | 790.33 | 105.00 | 111 | 50 | 255 | 0.27 | 0.12 | 0.61 | 2 | 1.75 | 116 | 0.28 | 0.80 | 29 | 0.07 | 0.20 |
110 | 17608 | 3 | 47.50 | 5869.33 | 7950 | 11915 | 1147 | 0.38 | 0.57 | 0.05 | 2 | 1.33 | 3948 | 0.22 | 0.98 | 82 | 0.00 | 0.02 |
111 | 108767 | 7 | 67.00 | 15538.14 | 27445 | 32918 | 61517 | 0.23 | 0.27 | 0.50 | 9 | 5.29 | 17655 | 0.16 | 0.57 | 13091 | 0.12 | 0.43 |
112 | 129 | 3 | 1020.00 | 43.00 | 29 | 25 | 63 | 0.25 | 0.21 | 0.54 | 0 | 0.00 | 46 | 0.36 | 0.90 | 5 | 0.04 | 0.10 |
113 | 379 | 3 | 92.50 | 126.33 | 10 | 9 | 245 | 0.04 | 0.03 | 0.93 | 1 | 1.00 | 87 | 0.23 | 0.96 | 4 | 0.01 | 0.04 |
114 | 932 | 3 | 641.00 | 310.67 | 169 | 93 | 490 | 0.22 | 0.12 | 0.65 | 3 | 2.67 | 191 | 0.20 | 0.69 | 85 | 0.09 | 0.31 |
115 | 1779 | 4 | 435.33 | 444.75 | 536 | 352 | 932 | 0.29 | 0.19 | 0.51 | 3 | 2.25 | 380 | 0.21 | 0.83 | 77 | 0.04 | 0.17 |
116 | 2216 | 5 | 156.00 | 443.20 | 337 | 172 | 1522 | 0.17 | 0.08 | 0.75 | 2 | 2.20 | 569 | 0.26 | 0.74 | 198 | 0.09 | 0.26 |
117 | 4644 | 3 | 57.50 | 1548.00 | 1240 | 1476 | 1668 | 0.28 | 0.34 | 0.38 | 5 | 2.67 | 1052 | 0.23 | 0.51 | 1006 | 0.22 | 0.49 |
118 | 2435 | 3 | 36.00 | 811.67 | 355 | 271 | 1302 | 0.18 | 0.14 | 0.68 | 4 | 4.00 | 547 | 0.22 | 0.66 | 288 | 0.12 | 0.34 |
119 | 296 | 3 | 1653.50 | 98.67 | 26 | 26 | 176 | 0.11 | 0.11 | 0.77 | 1 | 1.00 | 53 | 0.18 | 0.79 | 14 | 0.05 | 0.21 |
120 | 1806 | 5 | 213.25 | 361.20 | 84 | 27 | 1387 | 0.06 | 0.02 | 0.93 | 4 | 2.40 | 493 | 0.27 | 0.71 | 204 | 0.11 | 0.29 |
121 | 1215 | 6 | 225.40 | 202.50 | 180 | 106 | 880 | 0.15 | 0.09 | 0.75 | 0 | 0.00 | 221 | 0.18 | 1.00 | 0 | 0.00 | 0.00 |
122 | 820 | 5 | 174.50 | 164.00 | 362 | 340 | 322 | 0.35 | 0.33 | 0.31 | 1 | 1.00 | 128 | 0.16 | 0.64 | 73 | 0.09 | 0.36 |
123 | 166 | 3 | 1007.00 | 55.33 | 38 | 37 | 78 | 0.25 | 0.24 | 0.51 | 0 | 0.00 | 51 | 0.31 | 0.84 | 10 | 0.06 | 0.16 |
124 | 210 | 3 | 1025.50 | 70.00 | 56 | 36 | 102 | 0.29 | 0.19 | 0.53 | 1 | 1.00 | 69 | 0.33 | 0.84 | 13 | 0.06 | 0.16 |
125 | 1273 | 5 | 289.25 | 254.60 | 140 | 124 | 862 | 0.12 | 0.11 | 0.77 | 0 | 0.00 | 271 | 0.21 | 1.00 | 0 | 0.00 | 0.00 |
126 | 2309 | 4 | 249.67 | 577.25 | 1305 | 1274 | 484 | 0.43 | 0.42 | 0.16 | 4 | 3.75 | 464 | 0.20 | 0.60 | 312 | 0.14 | 0.40 |
127 | 7478 | 3 | 82.50 | 2492.67 | 1308 | 1712 | 3485 | 0.20 | 0.26 | 0.54 | 2 | 1.00 | 1636 | 0.22 | 0.92 | 142 | 0.02 | 0.08 |
128 | 12771 | 8 | 51.43 | 1596.38 | 259 | 165 | 10954 | 0.02 | 0.01 | 0.96 | 2 | 2.00 | 3467 | 0.27 | 0.95 | 179 | 0.01 | 0.05 |
129 | 14625 | 8 | 331.29 | 1828.12 | 12553 | 10984 | 1945 | 0.49 | 0.43 | 0.08 | 1 | 1.00 | 943 | 0.06 | 0.80 | 237 | 0.02 | 0.20 |
130 | 5650 | 2 | 415.00 | 2825.00 | 1443 | 1443 | 1383 | 0.34 | 0.34 | 0.32 | 2 | 2.00 | 1406 | 0.25 | 0.79 | 382 | 0.07 | 0.21 |
131 | 2266 | 5 | 284.75 | 453.20 | 1134 | 908 | 797 | 0.40 | 0.32 | 0.28 | 3 | 1.20 | 476 | 0.21 | 0.74 | 171 | 0.08 | 0.26 |
132 | 4505 | 6 | 967.20 | 750.83 | 3926 | 3194 | 445 | 0.52 | 0.42 | 0.06 | 2 | 1.17 | 1093 | 0.24 | 0.80 | 281 | 0.06 | 0.20 |
133 | 11196 | 4 | 1434.67 | 2799.00 | 7467 | 8779 | 580 | 0.44 | 0.52 | 0.03 | 3 | 2.75 | 2559 | 0.23 | 0.75 | 839 | 0.07 | 0.25 |
134 | 56130 | 10 | 186.11 | 5613.00 | 26124 | 24157 | 25200 | 0.35 | 0.32 | 0.33 | 6 | 4.10 | 12120 | 0.22 | 0.66 | 6322 | 0.11 | 0.34 |
135 | 1662 | 7 | 233.50 | 237.43 | 493 | 300 | 1046 | 0.27 | 0.16 | 0.57 | 1 | 1.00 | 269 | 0.16 | 0.96 | 12 | 0.01 | 0.04 |
136 | 859 | 3 | 406.00 | 286.33 | 298 | 296 | 280 | 0.34 | 0.34 | 0.32 | 1 | 1.00 | 238 | 0.28 | 0.99 | 3 | 0.00 | 0.01 |
137 | 22404 | 3 | 7468.00 | 22347 | 22345 | 2 | 0.50 | 0.50 | 0.00 | 2 | 1.00 | 10789 | 0.48 | 1.00 | 3 | 0.00 | 0.00 | |
138 | 16505 | 3 | 5501.67 | 196 | 4147 | 9464 | 0.01 | 0.30 | 0.69 | 2 | 1.67 | 2259 | 0.14 | 0.98 | 37 | 0.00 | 0.02 | |
139 | 1431 | 5 | 286.20 | 196 | 951 | 380 | 0.13 | 0.62 | 0.25 | 1 | 0.60 | 196 | 0.14 | 0.98 | 5 | 0.00 | 0.02 |
The following table shows the top 10 ranked features by the RELIEF feature selection algorithm for LOV and SPARQL datasets. A 0 means that no further significant features were selected. Other integer values correspond to the features discussed in the paper with the following equivalences:
dataset | 1stFeat | 2ndFeat | 3rdFeat | 4thFeat | 5thFeat | 6thFeat | 7thFeat | 8thFeat | 9thFeat | 10thFeat | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | lov/adms-4-1-1-allDrift-T | 2 | 3 | 4 | 1 | 6 | 5 | 7 | 15 | 16 | 8 |
2 | lov/aiiso-3-1-1-allDrift-T | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | lov/bag-3-1-1-allDrift-T | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | lov/basic-5-1-1-allDrift-T | 6 | 4 | 3 | 2 | 1 | 11 | 10 | 12 | 16 | 15 |
5 | lov/bbc-4-1-1-allDrift-T | 1 | 3 | 2 | 4 | 5 | 6 | 12 | 13 | 8 | 7 |
6 | lov/bbccms-3-1-1-allDrift-T | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | lov/bbccore-4-1-1-allDrift-T | 1 | 4 | 2 | 3 | 5 | 6 | 10 | 12 | 13 | 11 |
8 | lov/bibo-3-1-1-allDrift-T | 6 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | lov/bio-7-1-1-allDrift-T | 6 | 5 | 5 | 6 | 6 | 5 | 8 | 10 | 9 | 14 |
10 | lov/biro-3-1-1-allDrift-T | 3 | 4 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | lov/c4o-4-1-1-allDrift-T | 2 | 3 | 4 | 1 | 6 | 5 | 7 | 15 | 16 | 8 |
12 | lov/cnt-3-1-1-allDrift-T | 16 | 15 | 7 | 10 | 9 | 8 | 11 | 14 | 13 | 12 |
13 | lov/co-6-1-1-allDrift-T | 5 | 6 | 4 | 1 | 3 | 2 | 15 | 14 | 16 | 11 |
14 | lov/cogs-4-1-1-allDrift-T | 6 | 6 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | lov/cold-5-1-1-allDrift-T | 8 | 16 | 9 | 10 | 15 | 11 | 14 | 13 | 7 | 12 |
16 | lov/comm-5-1-1-allDrift-T | 1 | 4 | 2 | 3 | 5 | 6 | 4 | 3 | 2 | 1 |
17 | lov/d2rq-9-1-1-allDrift-T | 6 | 6 | 6 | 5 | 5 | 5 | 1 | 3 | 2 | 4 |
18 | lov/dcat-6-1-1-allDrift-T | 1 | 4 | 2 | 3 | 5 | 6 | 15 | 11 | 12 | 13 |
19 | lov/dcite-9-1-1-allDrift-T | 11 | 9 | 10 | 12 | 13 | 8 | 7 | 16 | 15 | 14 |
20 | lov/earl-7-1-1-allDrift-T | 15 | 16 | 14 | 11 | 10 | 9 | 8 | 7 | 13 | 12 |
21 | lov/ebucore-7-1-1-allDrift-T | 16 | 8 | 7 | 10 | 9 | 11 | 15 | 14 | 13 | 12 |
22 | lov/edm-4-1-1-allDrift-T | 2 | 3 | 4 | 1 | 15 | 7 | 8 | 16 | 10 | 13 |
23 | lov/emp-4-1-1-allDrift-T | 1 | 1 | 3 | 2 | 4 | 3 | 2 | 4 | 5 | 5 |
24 | lov/fabio-15-1-1-allDrift-T | 16 | 14 | 12 | 13 | 15 | 7 | 16 | 7 | 11 | 10 |
25 | lov/foaf-10-1-1-allDrift-T | 16 | 15 | 14 | 11 | 12 | 10 | 16 | 7 | 8 | 9 |
26 | lov/food-6-1-1-allDrift-T | 1 | 1 | 3 | 4 | 2 | 4 | 3 | 2 | 5 | 6 |
27 | lov/geofla-3-1-1-allDrift-T | 3 | 4 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
28 | lov/geom-4-1-1-allDrift-T | 5 | 6 | 5 | 6 | 13 | 16 | 12 | 14 | 10 | 11 |
29 | lov/gn-12-1-1-allDrift-T | 5 | 7 | 12 | 8 | 13 | 6 | 0 | 0 | 0 | 0 |
30 | lov/gndo-4-1-1-allDrift-T | 16 | 8 | 15 | 10 | 9 | 7 | 11 | 14 | 13 | 12 |
31 | lov/hr-3-1-1-allDrift-T | 16 | 15 | 7 | 10 | 9 | 8 | 11 | 13 | 14 | 12 |
32 | lov/itsmo-5-1-1-allDrift-T | 13 | 8 | 7 | 12 | 14 | 15 | 16 | 12 | 13 | 7 |
33 | lov/ldp-3-1-1-allDrift-T | 6 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
34 | lov/lemon-4-1-1-allDrift-T | 6 | 6 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
35 | lov/lexinfo-6-1-1-allDrift-T | 6 | 16 | 8 | 10 | 9 | 11 | 7 | 12 | 13 | 14 |
36 | lov/lgdo-4-1-1-allDrift-T | 16 | 7 | 15 | 10 | 8 | 9 | 11 | 12 | 13 | 14 |
37 | lov/lingvo-13-1-1-allDrift-T | 16 | 8 | 15 | 10 | 9 | 7 | 11 | 14 | 12 | 13 |
38 | lov/lv-16-1-1-allDrift-T | 11 | 14 | 13 | 15 | 9 | 16 | 12 | 10 | 8 | 7 |
39 | lov/marl-4-1-1-allDrift-T | 16 | 8 | 15 | 10 | 9 | 7 | 11 | 13 | 14 | 12 |
40 | lov/md-4-1-1-allDrift-T | 16 | 8 | 15 | 10 | 9 | 7 | 11 | 12 | 14 | 13 |
41 | lov/mrel-7-1-1-allDrift-T | 16 | 7 | 15 | 14 | 13 | 16 | 1 | 2 | 5 | 4 |
42 | lov/msm-4-1-1-allDrift-T | 16 | 13 | 14 | 11 | 12 | 10 | 15 | 7 | 8 | 9 |
43 | lov/mtlo-3-1-1-allDrift-T | 5 | 6 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
44 | lov/music-3-1-1-allDrift-T | 5 | 6 | 4 | 3 | 1 | 0 | 0 | 0 | 0 | 0 |
45 | lov/nif-10-1-1-allDrift-T | 5 | 5 | 5 | 5 | 3 | 4 | 13 | 12 | 9 | 10 |
46 | lov/ntag-3-1-1-allDrift-T | 6 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
47 | lov/ocd-4-1-1-allDrift-T | 1 | 3 | 4 | 2 | 12 | 13 | 10 | 11 | 8 | 9 |
48 | lov/opmw-4-1-1-allDrift-T | 5 | 10 | 8 | 7 | 15 | 9 | 16 | 11 | 14 | 13 |
49 | lov/org-10-1-1-allDrift-T | 8 | 7 | 12 | 13 | 3 | 4 | 14 | 16 | 9 | 10 |
50 | lov/pattern-3-1-1-allDrift-T | 6 | 1 | 2 | 5 | 3 | 4 | 0 | 0 | 0 | 0 |
51 | lov/pav-8-1-1-allDrift-T | 16 | 8 | 15 | 10 | 9 | 7 | 11 | 13 | 14 | 12 |
52 | lov/po-3-1-1-allDrift-T | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
53 | lov/poste-5-1-1-allDrift-T | 1 | 3 | 4 | 2 | 5 | 6 | 7 | 15 | 16 | 8 |
54 | lov/pro-11-1-1-allDrift-T | 1 | 4 | 3 | 2 | 5 | 6 | 13 | 8 | 15 | 14 |
55 | lov/prov-5-1-1-allDrift-T | 4 | 3 | 2 | 1 | 13 | 12 | 8 | 16 | 10 | 11 |
56 | lov/prv-8-1-1-allDrift-T | 1 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
57 | lov/pso-8-1-1-allDrift-T | 1 | 3 | 2 | 4 | 6 | 5 | 11 | 13 | 14 | 15 |
58 | lov/qb-4-1-1-allDrift-T | 8 | 12 | 7 | 13 | 16 | 15 | 14 | 1 | 9 | 10 |
59 | lov/ruto-3-1-1-allDrift-T | 16 | 15 | 7 | 10 | 9 | 8 | 11 | 13 | 14 | 12 |
60 | lov/sam-3-1-1-allDrift-T | 1 | 2 | 3 | 4 | 6 | 0 | 0 | 0 | 0 | 0 |
61 | lov/semio-4-1-1-allDrift-T | 5 | 5 | 6 | 1 | 4 | 3 | 2 | 6 | 15 | 16 |
62 | lov/sio-7-1-1-allDrift-T | 16 | 10 | 9 | 12 | 11 | 13 | 7 | 16 | 15 | 14 |
63 | lov/sport-4-1-1-allDrift-T | 5 | 5 | 6 | 6 | 1 | 2 | 3 | 4 | 15 | 16 |
64 | lov/spt-5-1-1-allDrift-T | 16 | 13 | 14 | 11 | 12 | 10 | 16 | 7 | 15 | 9 |
65 | lov/taxon-5-1-1-allDrift-T | 5 | 5 | 9 | 11 | 12 | 13 | 14 | 10 | 8 | 16 |
66 | lov/teach-6-1-1-allDrift-T | 1 | 4 | 6 | 5 | 3 | 2 | 14 | 13 | 16 | 11 |
67 | lov/thors-5-1-1-allDrift-T | 6 | 5 | 4 | 1 | 3 | 2 | 12 | 13 | 14 | 15 |
68 | lov/tisc-5-1-1-allDrift-T | 3 | 1 | 4 | 5 | 6 | 2 | 1 | 6 | 3 | 5 |
69 | lov/tm-4-1-1-allDrift-T | 6 | 5 | 4 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
70 | lov/txn-8-1-1-allDrift-T | 5 | 5 | 5 | 5 | 9 | 8 | 10 | 16 | 11 | 12 |
71 | lov/umbel-8-1-1-allDrift-T | 6 | 6 | 6 | 6 | 5 | 5 | 5 | 5 | 12 | 11 |
72 | lov/vivo-10-1-1-allDrift-T | 1 | 1 | 6 | 1 | 6 | 1 | 1 | 6 | 6 | 2 |
73 | lov/voaf-7-1-1-allDrift-T | 5 | 6 | 4 | 5 | 2 | 3 | 6 | 1 | 1 | 4 |
74 | sparql/fao-3-1-1-allDrift-T | 16 | 15 | 7 | 10 | 9 | 8 | 11 | 12 | 13 | 14 |
75 | sparql/lingvoj-5-1-1-allDrift-T | 6 | 5 | 10 | 15 | 14 | 9 | 13 | 12 | 16 | 8 |
Through regression, we analyse what dataset characteristics are good predictors of the performance of the best selected classifier in our approach, using the area under the ROC curve as a response variable. We find that, under the null hypothesis of normality and non-dependence, the predictors nSnapshots, avgTreeDepth, ratioStructural, ratioInserts and ratioComm are good explanatory variables (i.e. have an influence) with respect to the performance of change detection in version chains. The first model, which includes ratioInserts discarding ratioDeletes and ratioComm due to multi-colinearity, shows the best model fit with respect to the data. The figure below depicts this.
Dependent variable: | |||
roc | |||
(1) | (2) | (3) | |
log(nSnapshots) | 0.365*** | 0.350*** | 0.370*** |
(0.080) | (0.085) | (0.083) | |
log(avgGap) | -0.001 | 0.013 | 0.006 |
(0.031) | (0.032) | (0.032) | |
log(totalSize) | -0.029 | -0.023 | -0.029 |
(0.021) | (0.023) | (0.022) | |
avgTreeDepth | 0.114*** | 0.113*** | 0.115*** |
(0.038) | (0.039) | (0.038) | |
ratioInstances | 0.465 | 0.426 | 0.477 |
(0.327) | (0.343) | (0.336) | |
ratioStructural | -1.858** | -1.711** | -1.895** |
(0.755) | (0.804) | (0.782) | |
ratioInserts | 0.748*** | ||
(0.249) | |||
ratioDeletes | 0.173 | ||
(0.253) | |||
ratioComm | -0.265* | ||
(0.136) | |||
Constant | -0.125 | -0.064 | 0.154 |
(0.240) | (0.249) | (0.261) | |
Observations | 131 | 131 | 131 |
R2 | 0.269 | 0.218 | 0.239 |
Adjusted R2 | 0.228 | 0.174 | 0.196 |
Residual Std. Error (df = 123) | 0.345 | 0.357 | 0.352 |
F Statistic (df = 7; 123) | 6.471*** | 4.908*** | 5.517*** |
Note: | *p<0.1; **p<0.05; ***p<0.01 |
Through multinomial logistic regression, we analyse what dataset characteristics are good predictors of the classifier type selected as best in our approach. We find that avgGap is influential at selecting a tree classifier instead of a bayes one. We also find that totalSize is influential at selecting functions and rules based classifiers instead of bayes ones. The pictures below show simulations on how these predictors influcence the choice of the different classifier families, in one overall figure and two detailed ones (simulating the effect of avgGap and totalSize).
Dependent variable: | |||||||||
functions | rules | trees | functions | rules | trees | functions | rules | trees | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
log(nSnapshots) | -0.291 | -0.257 | 1.975 | -0.180 | -0.239 | 1.745 | -0.193 | -0.212 | 1.838 |
(0.656) | (0.765) | (1.503) | (0.680) | (0.790) | (1.512) | (0.667) | (0.777) | (1.497) | |
log(avgGap) | 0.238 | 0.145 | 1.385* | 0.266 | 0.173 | 1.269* | 0.248 | 0.161 | 1.351* |
(0.242) | (0.271) | (0.734) | (0.240) | (0.269) | (0.703) | (0.240) | (0.270) | (0.729) | |
log(totalSize) | 0.669*** | 0.539* | -0.052 | 0.636** | 0.531* | -0.010 | 0.641*** | 0.524* | -0.025 |
(0.249) | (0.278) | (0.563) | (0.251) | (0.282) | (0.555) | (0.249) | (0.279) | (0.557) | |
avgTreeDepth | -0.399 | -0.334 | 0.534 | -0.393 | -0.336 | 0.564 | -0.385 | -0.323 | 0.553 |
(0.302) | (0.330) | (0.719) | (0.304) | (0.334) | (0.728) | (0.303) | (0.332) | (0.728) | |
ratioInstances | 1.378 | 2.463 | 3.090 | 1.071 | 2.246 | 3.394 | 1.269 | 2.330 | 3.221 |
(3.485) | (4.021) | (6.654) | (3.455) | (3.981) | (6.629) | (3.476) | (4.005) | (6.649) | |
ratioStructural | -9.054 | 1.357 | -9.539 | -9.039 | 1.674 | -10.799 | -9.594 | 1.116 | -10.030 |
(6.040) | (6.135) | (13.505) | (6.142) | (6.353) | (13.945) | (6.136) | (6.267) | (13.827) | |
ratioInserts | 3.006 | 2.376 | -3.540 | ||||||
(1.906) | (2.210) | (4.401) | |||||||
ratioDeletes | 1.918 | 0.929 | -2.341 | ||||||
(1.907) | (2.154) | (4.058) | |||||||
ratioComm | -1.440 | -0.945 | 1.615 | ||||||
(1.028) | (1.170) | (2.219) | |||||||
Constant | -5.610** | -5.580** | -12.702** | -5.288** | -5.259** | -12.402** | -4.059* | -4.494* | -14.266** |
(2.248) | (2.511) | (5.954) | (2.210) | (2.494) | (5.759) | (2.265) | (2.585) | (6.511) | |
Akaike Inf. Crit. | 313.543 | 313.543 | 313.543 | 316.179 | 316.179 | 316.179 | 314.605 | 314.605 | 314.605 |
Note: | *p<0.1; **p<0.05; ***p<0.01 |